ANIL NEERUKONDA
INSTITUTE OF TECHNOLOGY AND SCIENCES
(AUTONOMOUS)
ACCREDITED BY NBA & NAAC WITH‘A’GRADE

Affiliated to Andhra University

Academic Regulations
Curriculum &
Syllabi (First Year I & II Sem)

DEPARTMENT OF
ELECTRICAL & ELECTRONICS ENGINEERING
ANIL NEERUKONDA INSTITUTE OF TECHNOLOGY AND SCIENCES
(AUTONOMOUS)

VISION

ANITS envisions to emerge as a world-class technical institution whose products represent a good blend of technological excellence and the best of human values.

MISSION

To train young men and women into competent and confident engineers with excellent communicational skills, to face the challenges of future technology changes, by imparting holistic technical education using the best of infrastructure, outstanding technical and teaching expertise and an exemplary work culture, besides moulding them into good citizens.

QUALITY POLICY

ANITS is engaged in imparting quality technical education. It constantly strives towards achieving high standards of teaching, training and development of human resources by encouraging its faculty and staff to work as a team and to update their knowledge and skills continually to match the needs of industry.
Foreword

ANIL NEERUKONDA INSTITUTE OF TECHNOLOGY AND SCIENCES (ANITS) was founded by Anil Neerukonda Educational Society (ANES) in the fond memory of Anil Neerukonda, son of Dr. B R Prasad Neerukonda.

Its humble journey started in 2001 with an intake of 220 students into four undergraduate B.Tech programmes. Within 14 years of its establishment, the institute registered phenomenal growth and is accredited by NAAC with ‘A’ and by NBA for the second time. It is permanently affiliated to Andhra University and has achieved autonomous status in 2015. Further, the institute has been currently ranked as 4th among the private engineering colleges in Andhra Pradesh by APSCHE. It has been recognised as “Centre for Excellence” by Infosys and is accorded by Andhra University as “Centre for Research”.

Today, the institute offers seven B.Tech. programmes and four M.Tech. programmes with an annual total intake about 1100 students. The institute offers amenities like separate hostels for boys and girls, indoor and outdoor games, transport covering all the major locations of Visakhapatnam and medical aid provided by Anil Neerukonda hospital and NRI Institute of Medical Sciences, another educational institution of ANES.

Apart from the State-of-the-Art laboratories, well established teaching methodology and implementation of the best practices, the wonderful co-coordination of the Management, Faculty and Parents has so far played a crucial role in shaping the future of the ANITIANS and has been the talisman of the Institute’s phenomenal growth.

The success stories of our champions at several qualifying exams for the higher studies like GRE, TOEFL, CAT and GATE, the impressive track record of the placements with highest known packages in MNCs like Google, Oracle, Infosys, TCS and so on are the sweetest fruits of our efforts.

PRAGNANAM BRAHMA, the motto of ANITS, is truly practiced by all the members of ANITS family, a direct effort to serve the society, nation and the mankind as well.

Hearty welcome to ANITS family.

Prof. T.V. Hanumantha Rao
PRINCIPAL
Achievements & Highlights

- Autonomous since May 2015
- NAAC with ‘A’ Grade
- Accredited and reaccredited by NBA, New Delhi
- UGC recognition under 2(f) and 12(B)
- Permanent affiliation to Andhra University, Visakhapatnam
- Among top 3 most preferred colleges in A.P.
- “AAA” rating accorded by "Careers Digest 360"
- Recognized as a Research Center by Andhra University
- Selected as Skill Development Center (SDC) by Govt. of A.P.
- First institute to be accorded “Center for Excellence” by Infosys
- Ranked 3rd among the Promising Private Engineering Colleges for excellence as per Competition Success Review (CSR) magazine in the year 2016
- Recognized as "Silver Partner" of Keane India (Chennai) for the year 2007-2008
- Collaborated with "Mission (R&D)" funded by Wipro
- "On Campus Training" by IBM for the students
- Collaboration with Unisys Global Solutions India (Bangalore) for internship
- Highest package offer around 2 crores including perks – highest offer in South India
- 8 lacs to 10 lacs packages –for majority ANITIANS
Contents

1. Department Profile

2. Vision & Mission of the Department

3. Program Educational Objectives

4. Program Outcomes & Program Specific Outcomes

5. Academic Regulations

6. Curriculum

7. First Year Syllabi (I-Sem & II-Sem)
Department Profile

The Department of Electrical and Electronics Engineering (EEE) was started in the year 2001-02 with an intake of 40 students. It was later increased to 60 and 120 in the years 2002-03 & 2009-10 respectively. The UG course in EEE run by the department was accredited by NBA for 3 years in July 2008 and was re-accredited in August 2013. A PG course with Control Systems specialization is also being offered by the department with an intake of 18. The department was granted recognition as a Research Center to provide guidance to full time / part-time Ph.D. scholars.

It has 32 qualified and dedicated faculty and is headed by Prof. G. Raja Rao, who has around 30 years of experience in teaching and industry. It has spacious laboratories viz. Networks, Measurements, Electrical Machines, Power Electronics, Control Systems, Digital Electronics & Micro Processors and Power System Simulation, fulfilling the norms of both Andhra University and AICTE. The Department has a separate Computer Center with 30 systems to cater to the needs of EEE students. It also has a separate departmental Library with 1000 books for the students of EEE for ready reference. Student Chapters like ISTE, ISHRAE, IE(I) are active in the department. There are around 120 student members and 25 faculty members in ISTE chapter, around 310 student members in IE(I) student chapter and around 80 student members in ISHRAE student chapter. Several students participated in the events organized by the student chapters with enthusiasm within and outside the institute and won several prizes.

So far Twelve batches have left the portals of this college and our alumni have settled in various reputed organizations like BARC, POWER GRID, NTPC, BHEL, RINL, MES, L&T, various State Electricity Companies and in many software companies like Infosys, Syntel, Deloitte, Mu sigma, Capgemini, Mahendra Satyam, TCS, Wipro etc. in India and abroad.
VISION

The EEE Department at ANITS envisages attaining a position of national excellence for graduating students that have experienced implementing theory into practice and are capable of succeeding in higher learning up keeping ethical values.

MISSION

To promote learning and research in the field of Electrical & Electronics Engineering and to advance and disseminate technical and professional knowledge in shaping young engineers into future human resource appropriate to the needs of our nation.
PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

Programme Educational Objectives are broad statements that describe the career and professional accomplishments that the programme is preparing graduates to achieve.

I. To prepare students well to have successful careers in multidisciplinary global industry and to meet the technological challenges of the future.

II. To produce graduates with a strong foundation in the basic sciences, mathematics and electrical engineering which will prepare them for productive engineering careers and enable them to pursue higher studies.

III. To provide training to students with good engineering background that will enable them to identify and solve present day electrical engineering problems and to acquire analysis and design capabilities.

IV. To train students to have strong communication skills and to develop the ability to work as members of multidisciplinary teams with a sense of environmental and ethical awareness.

V. To provide an amicable academic environment and guidance to the students for successful graduation and to realize the necessity of lifelong learning to excel in their professional careers.
PROGRAM OUTCOMES (POs)

Upon completion of the programme, the students will attain the following capabilities:

PO-1 Ability to apply knowledge of basic sciences, mathematics and electrical & electronics engineering.

PO-2 Ability to design and conduct experiments in electrical engineering, and to analyze and interpret the data generated by those experiments.

PO-3 Ability to design systems that include hardware components and software simulation.

PO-4 Ability to identify, formulate and solve problems in electrical engineering.

PO-5 Attainment of the broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and social context.

PO-6 Ability to communicate effectively in oral, visual, graphical and written modes.

PO-7 Ability to participate and succeed in campus recruitments, competitive examinations and higher studies.

PO-8 Ability to function effectively in multi-disciplinary teams which may involve people from diverse backgrounds.

PO-9 Understanding of contemporary technical and professional issues in the practice of electrical engineering.

PO-10 Understanding of professional and ethical responsibilities.

PO-11 To recognize the need for and an ability to engage in life-long learning and be prepared to continue their education through formal or informal study.
PROGRAM SPECIFIC OUTCOMES (PSOS)

Electrical and Electronics Engineering Graduates will be able to:

PSO1 Apply the fundamentals of engineering to identify, formulate, design and investigate complex problems of electrical and electronics engineering.

PSO2 Succeed in competitive examinations and higher studies of multi disciplinary environments and to engage in life-long learning.

PSO3 Understand the impact of Professional Engineering solutions in societal and environmental context with due commitment to professional ethics.
ACADEMIC REGULATIONS
ACADEMIC REGULATIONS FOR B.TECH PROGRAMME
UNDER AUTONOMOUS STATUS

(W.E.F. THE ADMITTED BATCH OF 2015-16)

I. Admissions:
Admissions into first year of B.Tech.Programme and admissions into second year (lateral entry) of B.Tech.Programme of the Institute will be as per the norms stipulated by Andhra University & Andhra Pradesh State Council for Higher Education (APSCHE), Govt. of Andhra Pradesh. The academic regulations of Autonomous status mentioned herewith will be applicable from 2016-17 in case of Lateral Entry admissions.

II. Programmes Offered:
The following are the B.Tech. Programmes offered by the Institute.
1. Chemical Engineering
2. Civil Engineering
3. Computer Science & Engineering
4. Electrical & Electronics Engineering
5. Electronics & Communication Engineering
6. Information Technology
7. Mechanical Engineering

III. Structure of the B. Tech. Programme:
The programme consists of Humanities, Basic Sciences, Engineering Sciences and Technology. The complete programme is distributed over eight semesters with two semesters per academic year. Every branch of B.Tech programme will have a curriculum and syllabi for the courses recommended by the Board of Studies and approved by the Academic Council. The academic programmes of the Institute follow the credit system. The curriculum of B.Tech programme is designed to have a total of about 189 credits of which a student should acquire a minimum of 180 credits to get the degree awarded. If a student earns all the total credits, then the best 180 credits are considered to determine the final CGPA. The lateral entrants shall have a total of about 146 credits of which one should acquire a minimum of 137 credits to get the degree awarded. If a lateral student takes all the credits, then the best 137 credits are considered to determine the final CGPA.
Criteria for achieving the minimum credits:

- **Mandatory courses**
 All courses mentioned in the programme excluding open electives, professional electives and MOOCs come under mandatory courses.

- **Open Elective- A course offered by any department other than home department**
 The student has to choose one open elective out of the open electives offered by other departments during third year first semester or final year first semester.

- **Professional Electives**
 The student has to register for at least \((n-1)\) no. of professional electives \((n = \text{no. of professional electives offered by the department during the programme})\) as per his choice as provided in the curriculum. However, he can register for all the professional electives offered by the department.

- **MOOCs- Massive Open Online Courses**
 The student is required to register for one MOOCs course any time during second year first semester to fourth year second semester. However, its grade will be accorded at the end of fourth year second semester along with the fourth year second semester courses of the programme.

 For the award of the degree, the student has to secure a minimum pass grade or above in all the mandatory courses, registered open elective, registered professional electives. However, the degree will still be awarded even if the student fails / opts out of MOOCs.

IV. Duration of the Programme:

The duration of the programme is four academic years consisting of two semesters in each academic year. A student is permitted to complete the programme in a stipulated time frame of 8 consecutive academic years from the date of initial admission. Students joining the programme in the 2nd year through lateral entry scheme shall have to complete the programme in a stipulated time frame of 6 consecutive academic years from the date of initial admission.
V. Medium of Instruction:
The medium of instruction and examination is English.

VI. Minimum Instruction Days:
Each semester normally consists of a minimum of 16 weeks of instruction.

VII. Academic Calendar:
The dates of all important events, such as commencement of class work, examinations, vacations, etc., during the academic year will be specified in the Academic Calendar of the Institute, as approved by the Academic Council.

VIII. Examinations & Evaluation Process:
The performance of a student in each semester shall be evaluated subject-wise with a maximum of 100 marks each for theory and practical/drawing subjects.

(A) Theory Course:
For all lecture based theory courses, the assessment shall be for 40 marks through internal evaluation and 60 marks through external semester-end examination of three hours duration except for the subjects with 100% internal assessment in which case an internal examination will be conducted for 60 marks along with the semester-end examinations.

i) Internal evaluation:
The sessional marks shall be awarded through internal evaluation by the teachers concerned based on the continuous assessment which includes class tests, quiz, viva-voce, assignments, student regularity, two mid-examinations etc., according to a scheme notified by the department at the beginning of the semester.

Out of the 40 internal evaluation marks, 20 marks are assigned for 2 internal-mid exams, 10 marks for assignments, 5 marks for projects/case studies/quiz/tests and 5 marks for attendance. The average of 2 internal-mid exams is considered for the 20 marks allocated.

Under any circumstances, no re-examination shall be conducted for the internal mid examinations.
ii) **External evaluation:**

The question paper shall be set externally and the answer scripts are valued through a double valuation system.

The average of the two valuations will be taken for the award of marks. In case, the difference of the marks obtained in the two valuations is more than 20%, then a third examiner shall value the script. Out of the three valuations, the average of marks obtained in third valuation and the marks obtained nearer to third valuation out of first two valuations shall be considered. No revaluation for any subject/course shall be entertained as already double valuation system is in existence. However, recounting is allowed on the request of the candidate on payment of specified fee. Challenge valuation shall also be entertained on payment of specified fee.

(B) Laboratory Course:

Each student will perform about 10 to 12 experiments in each laboratory course. Laboratory course will be evaluated for 100 marks, out of which 50 marks are for external examination and 50 marks are for internal evaluation. The internal marks are awarded based on continuous assessment, record work, internal lab examination and student regularity. The external examination will be conducted by two examiners, one of them being laboratory class teacher as internal examiner (nominated by the Principal on recommendation of HOD) and an external examiner nominated by the Principal from the panel of experts recommended by the HOD.

A candidate shall be declared to have passed any theory subject/course if he secures not less than 40% in external theory examination and also a minimum of 40% of total marks of that course which assures a minimum of ‘P’ grade.

A candidate shall be declared to have passed any practical course if he secures not less than 50% in external laboratory examination and also a minimum of 50% of total marks of that course which assures a minimum of ‘C’ grade.

Only in the case of quantitative and verbal aptitude – I & II, if a candidate fails he is given an opportunity to improve to pass grade (P) irrespective of the score he gets over and above pass mark in the reexamination within one month on payment of special examination fee.
Any student appearing for the semester-end practical examination is eligible only if he submits the bonafide record certified by the laboratory class teacher and the HOD.

(C) Project Work:

The project work is evaluated for 300 marks out of which 100 through internal assessment in the IV Year I semester through continuous assessment followed by final evaluation by a committee nominated by the HOD. For the 200 marks in IV year II semester, assessment is done for 100 marks internally and for the remaining 100 marks by the committee consisting of at least one external expert nominated by the Principal. If a student fails in the fourth year first semester project he has to appear for reassessment within one month for which he has to pay the reexamination fee.

(D) Industrial Training:

The industrial training is assessed internally for 100 marks by an internal evaluation committee constituted by the HOD.

(E) Supplementary Exam:

There will be supplementary examination for the programme such that for odd semester courses the supplementary exams will be conducted during summer vacation and for the even semester courses, the supplementary exams will be conducted during the winter vacation.

IX. Attendance Regulations:

Attendance of a student is computed by considering total number of periods conducted in all courses as the denominator and the total number of periods actually attended by the student in all courses, as the numerator. It is desirable for a student to put in 100% attendance in all the subjects. However, a candidate shall be permitted to appear for the semester end examination provided he maintains a minimum of 75% overall attendance in the semester.

The shortage of attendance on medical grounds can be condoned up to a maximum of 9% provided the student puts in at least 66% attendance and provided the Principal is satisfied with the genuineness of the reasons. The Medical Certificates are to be submitted to the Head of the Department when the candidate reports to the classes immediately after the absence. Certificates submitted afterwards shall not be entertained. Condonation fee as fixed by the college for those who put in attendance between $\geq 66\%$ and $<75\%$ shall be charged before the semester-end examinations.
In the case of students who participate in co-curricular, extra-curricular activities like student seminars, N.S.S, N.C.C, Inter-collegiate tournaments and any such other activities involving the representation of the Institute, with the prior approval of the Principal, the candidate may be deemed to have attended the classes during the actual period of such activity, solely for the purpose of attendance.

A student, who could not satisfy the minimum attendance requirement of 66% in any semester, shall be declared ‘Detained’. He is not eligible to appear for the semester end examinations. He will not be promoted to the next semester and shall have to repeat that semester with the next batch(es) of students. Such students who are detained and seek readmission, should submit an undertaking/a declaration that they will abide by the regulations existing at the time of readmission.

X. Minimum Academic Requirements:

The following academic requirements have to be satisfied in addition to the attendance requirements mentioned in item No. IX.

- A student shall be deemed to have satisfied the minimum academic requirements and earned the credits allotted to each theory subject if only he secures not less than 40% marks in the semester-end examination and a minimum of 40% marks in the sum of the internal evaluation and semester-end examination taken together. In the labs/projects, the student should secure a minimum of 50% marks in the external examination and a minimum of 50% marks in the sum of internal evaluation and external examination evaluation taken together.

- Further, a candidate has to secure a minimum of 40% in theory examination (excluding sessional marks) and a minimum of 50% (excluding sessional marks) in the Practical Examination / Project / Field Work / Viva Voce / Industrial Training in Semester –End / Year – End Examination and 50% aggregate to pass.

- A student will be promoted to the next semester, if only he satisfies the minimum attendance requirement.

- A student shall be promoted from II Year to III Year only if he fulfills the academic requirement of total 50% of all credits from regular and supplementary examinations of I Year and II Year – I Semester {i.e., total 3 semesters} examinations, irrespective of whether the candidate takes the examination in all the subjects or not.
A student shall be promoted from III Year to IV Year only if he fulfills the academic requirements of total 50% of credits from regular and supplementary examinations of I Year, II Year and III Year- I Semester {i.e., total 5 semesters}, irrespective of whether the candidate takes the examinations in all the subjects or not.

For lateral entry students, there is no credit based restriction for promotion from II year to III year. But a lateral entry student shall be promoted from III year to IV year only if he fulfills the academic requirements of total 50% of credits from regular and supplementary examinations of II year and III year- I Semester {i.e., total 3 semesters} irrespective of whether the candidate takes the examinations in all the subjects or not.

Students, who fail to complete their B.Tech. Programme within eight academic years from the year of their admission or fail to acquire the credits stipulated for the programme shall forfeit their seat in B.Tech. Programme and their admission shall stand cancelled. For lateral entry students they have to complete the programme in six years from their year of admission.

A candidate can avail the betterment chances during the validity of all courses.

XI. **Award of Grades:**

The absolute grading system is adopted as follows:

<table>
<thead>
<tr>
<th>S.No</th>
<th>Range of marks %</th>
<th>Grade</th>
<th>Grade Points</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>> 90 ≤ 100</td>
<td>O</td>
<td>10</td>
<td>Out Standing</td>
</tr>
<tr>
<td>2</td>
<td>> 80 ≤ 90</td>
<td>A+</td>
<td>9</td>
<td>Excellent</td>
</tr>
<tr>
<td>3</td>
<td>> 70 ≤ 80</td>
<td>A</td>
<td>8</td>
<td>Very Good</td>
</tr>
<tr>
<td>4</td>
<td>> 60 ≤ 70</td>
<td>B+</td>
<td>7</td>
<td>Good</td>
</tr>
<tr>
<td>5</td>
<td>> 55 ≤ 60</td>
<td>B</td>
<td>6</td>
<td>Above Average</td>
</tr>
<tr>
<td>6</td>
<td>≥ 50 ≤ 55</td>
<td>C</td>
<td>5</td>
<td>Average</td>
</tr>
<tr>
<td>7</td>
<td>≥ 40 < 50</td>
<td>P</td>
<td>4</td>
<td>Pass</td>
</tr>
<tr>
<td>8</td>
<td>< 40</td>
<td>F</td>
<td>0</td>
<td>Fail</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td>0</td>
<td>Ab (Absent)</td>
</tr>
</tbody>
</table>

Note: Minimum grade to pass in a laboratory course is ‘C’.
The performance of a student at the end of each semester is indicated in terms of Semester Grade Point Average (SGPA). The SGPA is calculated as below:

\[
\text{SGPA} = \frac{\sum (\text{Credits of a course} \times \text{Grade points awarded for a course})}{\sum (\text{Credits of a course})}
\]

SGPA is calculated for the candidates who have passed in all the courses in that semester.

Cumulative Grade Point Average (CGPA) will be calculated from II semester onwards up to the final semester and its calculation is similar to that of SGPA, considering all the courses offered from the first semester onwards.

CGPA is calculated for those who clear all the courses in all the previous semesters.

XII. Award of Class:

For award of class, a total of best 180 credits are considered in case of four year programme and best 137 credits in case of lateral entry admitted students. A candidate, who becomes eligible for the award of B.Tech. Degree, shall be placed in one of the following classes.

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Class</th>
<th>CGPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>First Class with Distinction</td>
<td>7.0 or more*</td>
</tr>
<tr>
<td>2</td>
<td>First Class</td>
<td>6.0 or more but less than 7.0</td>
</tr>
<tr>
<td>3</td>
<td>Second Class/Pass</td>
<td>5.0 or more but less than 6.0</td>
</tr>
</tbody>
</table>

First class with Distinction will be awarded only to those students who clear all the subjects of the program in first attempt of regular examinations.

The CGPA can be converted to aggregate percentage by multiplying CGPA with 10, in case of requirement by any other university or for any other purpose.

XIII. Eligibility for Award of B.Tech. Degree:

A student shall be eligible for the award of the B.Tech degree if he fulfills all the following conditions:
1) Registered and successfully completed all the components prescribed for eligibility in the Programme of study to which he/she is admitted within the stipulated period,

2) Obtained CGPA greater than or equal to 5.0 (Minimum requirement for Pass),

3) No disciplinary action is pending against him/her and

4) Has no dues to the Institute including hostels.

XIV. Malpractices:

The Controller of Examinations/Dean of Examinations shall refer the cases of suspected malpractices in mid examinations and semester-end examinations to Malpractice Enquiry Committee constituted by the Institute. Such committee shall follow the approved scales of punishment. The Principal shall take necessary action against the erring students based on the recommendations of the committee.

XV. Amendments To Regulations:

The Institute may, from time to time, revise, amend, or change the Regulations, Schemes of Examinations, and / or Syllabi and the changes or amendments made shall be applicable to all the students with effect from the dates notified by the Institute.

XVI. General:

(i) Where the words ‘he’, ‘him’, ‘his’, occur in the regulations, they include ‘she’, ‘her’, ‘hers’.

(ii) The academic regulation should be read as a whole for the purpose of any interpretation.

(iii) In case of any doubt or ambiguity in the interpretation of the above rules, the decision of the Principal is final.
CURRICULUM
First Year I – Semester

<table>
<thead>
<tr>
<th>CODE</th>
<th>Name of the subject</th>
<th>Instruction periods per week</th>
<th>MAX MARKS</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Category</td>
<td>Lecture</td>
<td>Tutorial</td>
</tr>
<tr>
<td>EEE 111</td>
<td>English</td>
<td>HS</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>EEE 112</td>
<td>Engineering Mathematics – I</td>
<td>BS</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>EEE 113</td>
<td>Engineering Physics</td>
<td>BS</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>EEE 114</td>
<td>Engineering Drawing</td>
<td>ES</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>EEE 115</td>
<td>Environmental Sciences</td>
<td>BS</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>EEE 116</td>
<td>Engineering Physics Lab</td>
<td>BS</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>EEE 117</td>
<td>Programming with ‘C’ Lab</td>
<td>ES</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>EEE 118</td>
<td>Engineering Workshop</td>
<td>ES</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>NCC</td>
<td></td>
<td>AC</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>15</td>
<td>4</td>
</tr>
</tbody>
</table>

BS: Basic Sciences; **ES**: Engineering Sciences; **HS**: Humanities and Social Sciences; **PC**: Professional Core; **PE**: Professional Elective; **OE**: Open Elective; **PW**: Project Work; **IT**: Industrial Training; **AC**: Audit Course

First Year II – Semester

<table>
<thead>
<tr>
<th>CODE</th>
<th>Name of the subject</th>
<th>Instruction periods per week</th>
<th>MAX MARKS</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Category</td>
<td>Lecture</td>
<td>Tutorial</td>
</tr>
<tr>
<td>EEE 121</td>
<td>Engineering Mathematics – II</td>
<td>BS</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>EEE 122</td>
<td>Engineering Chemistry</td>
<td>BS</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>EEE 123</td>
<td>Professional Ethics & Human Values</td>
<td>HS</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>EEE 124</td>
<td>Applied Physics</td>
<td>BS</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>EEE 125</td>
<td>Fundamentals of EEE</td>
<td>PC</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>EEE 126</td>
<td>Engineering Chemistry Lab</td>
<td>BS</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>EEE 127</td>
<td>Language Lab</td>
<td>HS</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>EEE 128</td>
<td>Objective Oriented Programming with C++ Lab</td>
<td>ES</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>NSS / Sports</td>
<td>AC</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>16</td>
<td>5</td>
</tr>
</tbody>
</table>

BS: Basic Sciences; **ES**: Engineering Sciences; **HS**: Humanities and Social Sciences; **PC**: Professional Core; **PE**: Professional Elective; **OE**: Open Elective; **PW**: Project Work; **IT**: Industrial Training; **AC**: Audit Course
Second Year I – Semester

<table>
<thead>
<tr>
<th>CODE</th>
<th>Name of the subject</th>
<th>Category</th>
<th>Instruction periods per week</th>
<th>MAX MARKS</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Lecture</td>
<td>Tutorial</td>
<td>Practical</td>
<td>Total</td>
</tr>
<tr>
<td>EEE 211</td>
<td>Engineering Mathematics-III</td>
<td>BS</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>EEE 212</td>
<td>Engineering Mechanics & Strength of Materials</td>
<td>ES</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>EEE 213</td>
<td>Electromagnetics</td>
<td>PC</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>EEE 214</td>
<td>Network Theory</td>
<td>PC</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>EEE 215</td>
<td>Electronic Devices & Circuits</td>
<td>PC</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>EEE 216</td>
<td>Digital Logic Design</td>
<td>ES</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>EEE 217</td>
<td>Networks Lab</td>
<td>PC</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>EEE 218</td>
<td>Electronic Devices & Circuits Lab</td>
<td>PC</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>18</td>
<td>6</td>
<td>6</td>
</tr>
</tbody>
</table>

Second Year II – Semester

<table>
<thead>
<tr>
<th>CODE</th>
<th>Name of the subject</th>
<th>Category</th>
<th>Instruction periods per week</th>
<th>MAX MARKS</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Lecture</td>
<td>Tutorial</td>
<td>Practical</td>
<td>Total</td>
</tr>
<tr>
<td>EEE 221</td>
<td>Engineering Mathematics-IV</td>
<td>BS</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>EEE 222</td>
<td>Electrical Measurements</td>
<td>PC</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>EEE 223</td>
<td>Performance of Electrical Machines-I</td>
<td>PC</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>EEE 224</td>
<td>Analog Electronic Circuits</td>
<td>PC</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>EEE 225</td>
<td>Signals & Systems</td>
<td>PC</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>EEE 226</td>
<td>Microprocessors and Micro Controllers</td>
<td>ES</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>EEE 227</td>
<td>Electrical Measurements Lab</td>
<td>PC</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>EEE 228</td>
<td>Analog Electronic Circuits Lab</td>
<td>PC</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>18</td>
<td>6</td>
<td>6</td>
</tr>
</tbody>
</table>
Third Year I – Semester

<table>
<thead>
<tr>
<th>CODE</th>
<th>Name of the subject</th>
<th>Instruction periods per week</th>
<th>MAX MARKS</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Category Lecture Tutorial Practical Total</td>
<td>Sessional Marks</td>
<td>Semester end marks</td>
</tr>
<tr>
<td>EEE 311</td>
<td>EEEE 311 Open Elective-I</td>
<td>OE 3 1 - 4</td>
<td>60 40 3</td>
<td></td>
</tr>
<tr>
<td>EEE 312</td>
<td>EEEE 312 Data Structures</td>
<td>ES 3 1 - 4</td>
<td>60 40 3</td>
<td></td>
</tr>
<tr>
<td>EEE 313</td>
<td>EEEE 313 Pulse and Digital Circuits</td>
<td>PC 3 1 - 4</td>
<td>60 40 3</td>
<td></td>
</tr>
<tr>
<td>EEE 314</td>
<td>EEEE 314 Linear IC’s and Applications</td>
<td>PC 3 1 - 4</td>
<td>60 40 3</td>
<td></td>
</tr>
<tr>
<td>EEE 315</td>
<td>EEEE 315 Electrical Power Generation & Utilization</td>
<td>PC 3 1 - 4</td>
<td>60 40 3</td>
<td></td>
</tr>
<tr>
<td>EEE 316</td>
<td>EEEE 316 Linear Control Systems</td>
<td>PC 3 1 - 4</td>
<td>60 40 3</td>
<td></td>
</tr>
<tr>
<td>EEE 317</td>
<td>EEEE 317 Digital Electronics & Microprocessors Lab</td>
<td>PC - - 3 3</td>
<td>50 50 2</td>
<td></td>
</tr>
<tr>
<td>EEE 318</td>
<td>EEEE 318 Linear Integrated Circuits & Pulse and Digital Circuits Lab</td>
<td>PC - - 3 3</td>
<td>50 50 2</td>
<td></td>
</tr>
<tr>
<td>EEE 319</td>
<td>EEEE 319 Verbal & Quantitative Aptitude-I</td>
<td>HS 4 - - 4</td>
<td>— 100 2</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>22 6 6 34</td>
<td>460 440 24</td>
<td></td>
</tr>
</tbody>
</table>

Third Year II - Semester

<table>
<thead>
<tr>
<th>CODE</th>
<th>Name of the subject</th>
<th>Instruction periods per week</th>
<th>MAX MARKS</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Category Lecture Tutorial Practical Total</td>
<td>Sessional Marks</td>
<td>Semester end marks</td>
</tr>
<tr>
<td>EEE 321</td>
<td>EEEE 321 Professional Elective-I</td>
<td>PE 3 1 - 4</td>
<td>60 40 3</td>
<td></td>
</tr>
<tr>
<td>EEE 322</td>
<td>EEEE 322 Thermo Dynamics and Mechanics of Fluids</td>
<td>ES 3 1 - 4</td>
<td>60 40 3</td>
<td></td>
</tr>
<tr>
<td>EEE 323</td>
<td>EEEE 323 Computer Architecture and Organization</td>
<td>ES 3 1 - 4</td>
<td>60 40 3</td>
<td></td>
</tr>
<tr>
<td>EEE 324</td>
<td>EEEE 324 Performance of Electrical Machines-II</td>
<td>PC 3 1 - 4</td>
<td>60 40 3</td>
<td></td>
</tr>
<tr>
<td>EEE 325</td>
<td>EEEE 325 Power Electronics</td>
<td>PC 3 1 - 4</td>
<td>60 40 3</td>
<td></td>
</tr>
<tr>
<td>EEE 326</td>
<td>EEEE 326 Power Transmission and Distribution</td>
<td>PC 3 1 - 4</td>
<td>60 40 3</td>
<td></td>
</tr>
<tr>
<td>EEE 327</td>
<td>EEEE 327 Electrical Machines Laboratory-I</td>
<td>PC - - 3 3</td>
<td>50 50 2</td>
<td></td>
</tr>
<tr>
<td>EEE 328</td>
<td>EEEE 328 TD & MF Laboratory</td>
<td>ES - - 3 3</td>
<td>50 50 2</td>
<td></td>
</tr>
<tr>
<td>EEE 329</td>
<td>EEEE 329 Soft Skills Laboratory</td>
<td>HS - - 3 3</td>
<td>— 100 2</td>
<td></td>
</tr>
<tr>
<td>EEE 3210</td>
<td>EEEE 3210 Verbal & Quantitative Aptitude-II</td>
<td>HS 4 - - 4</td>
<td>— 100 2</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>22 6 9 37</td>
<td>460 540 26</td>
<td></td>
</tr>
<tr>
<td>CODE</td>
<td>Name of the subject</td>
<td>Instruction periods per week</td>
<td>MAX MARKS</td>
<td>CREDITS</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>-------------------------------</td>
<td>-----------</td>
<td>---------</td>
</tr>
<tr>
<td></td>
<td>Category</td>
<td>Lecture</td>
<td>Tutorial</td>
<td>Practical</td>
</tr>
<tr>
<td>EEE 411</td>
<td>Open Elective-II</td>
<td>OE 3</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>EEE 412</td>
<td>Professional Elective-II</td>
<td>PE 3</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>EEE 413</td>
<td>Professional Elective-III</td>
<td>PE 3</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>EEE 414</td>
<td>Power System Analysis & Stability</td>
<td>PC 3</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>EEE 415</td>
<td>Semi Conductor Drives & Automation</td>
<td>PC 3</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>EEE 416</td>
<td>Power System Protection</td>
<td>PC 3</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>EEE 417</td>
<td>Power Electronics Laboratory</td>
<td>PC -</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>EEE 418</td>
<td>Electrical Machines Laboratory-II</td>
<td>PC -</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>EEE 419</td>
<td>Industrial Training *</td>
<td>IT -</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>EEE 410</td>
<td>Project Work</td>
<td>PW -</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>18</td>
<td>6</td>
<td>9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CODE</th>
<th>Name of the subject</th>
<th>Instruction periods per week</th>
<th>MAX MARKS</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Category</td>
<td>Lecture</td>
<td>Tutorial</td>
<td>Practical</td>
</tr>
<tr>
<td>EEE 421</td>
<td>Engineering Economics & Mgmt.</td>
<td>HS 3</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>EEE 422</td>
<td>Professional Elective-IV</td>
<td>PE 3</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>EEE 423</td>
<td>Energy Control & Management</td>
<td>PC 3</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>EEE 424</td>
<td>Power System Simulation Lab</td>
<td>PC -</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>EEE 425</td>
<td>Control Systems Laboratory</td>
<td>PC -</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>EEE 426</td>
<td>Project Work</td>
<td>PW -</td>
<td>-</td>
<td>6</td>
</tr>
<tr>
<td>MOOC’s</td>
<td>OE -</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>9</td>
<td>3</td>
<td>12</td>
</tr>
</tbody>
</table>
LIST OF DEPARTMENT ELECTIVES

ELECTIVE SUBJECTS:

Professional Elective-I: EEE 321
1) Advanced Control Systems and Design
2) ANN & Fuzzy Systems
3) Non-Conventional Energy Sources & Applications

Professional Elective-II: EEE 412
1) Electrical Drives & Traction
2) Electrical Engineering Drawing
3) Digital Signal Processing

Professional Elective-III: EEE 413
1) Distribution System Automation
2) Digital Control Systems
3) JAVA

Professional Elective-IV: EEE 422
1) Non-Linear Systems
2) Power System Reliability
3) Design of Electrical Machines
OPEN ELECTIVES - I

III Year I - Semester

<table>
<thead>
<tr>
<th>Department</th>
<th>Name of the Course offered</th>
</tr>
</thead>
</table>
| **ELECTRONICS AND COMMUNICATION ENGINEERING** | ECE 311 (A) Electronic Design with Integrated Circuits
ECE 311 (B) Digital Electronics
ECE 311 (C) Applications of Fields and Waves
ECE 311 (D) Special Topics: Electronics
ECE 311 (E) Applied Electronics |
| **ELECTRICAL AND ELECTRONICS ENGINEERING** | EEE 311 Renewable Energy Technologies |
| **MECHANICAL ENGINEERING** | MEC 311 (A) Robotics
MEC 311 (B) Computer Aided Design |
| **COMPUTER SCIENCE & ENGINEERING** | CSE311(A) Computer Operating systems
CSE311(B) Fundamentals of Computer Networks
CSE311(C) Concepts of Object Oriented Programming
CSE311(D) Database Management Systems |
| **INFORMATION TECHNOLOGY** | IT 311 (A) Essentials of Information Technology
IT 311 (B) Data Structures
IT 311 (C) Operating Systems
IT 311 (D) Database Management Systems |
| **CHEMICAL ENGINEERING** | CHE 311(A) Industrial Safety and Hazards Management
CHE 311(B) Engineering Biology
CHE 311(C) Fuel Cell Technology
CHE 311(D) Design of Experiments |
| **CIVIL ENGINEERING** | CIV 311 (A) Basic civil engineering
CIV 311 (B) Building Planning and construction
CIV 311 (C) Basics of Foundation Engineering |
| **MATHEMATICS** | MAT 311 (A) Numerical Methods
MAT 311 (B) Fuzzy Set Theory & Fuzzy Logic and its Applications
MAT 311 (C) Probability Statistics |
| **PHYSICS** | PHY 311 Nano Technology and Engineering Applications |
| **CHEMISTRY** | CHY 311 (A) Environmental Sciences
CHY 311 (B) Characterisation of Materials |
OPEN ELECTIVES - II

IV Year I - Semester

<table>
<thead>
<tr>
<th>Department</th>
<th>Name of the Course offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELECTRONICS AND COMMUNICATION ENGINEERING</td>
<td>ECE 411 (A) Introduction to Embedded System Design</td>
</tr>
<tr>
<td></td>
<td>ECE 411 (B) Introduction to VLSI Design</td>
</tr>
<tr>
<td></td>
<td>ECE 411 (C) Introduction to Image Processing /Computer Vision</td>
</tr>
<tr>
<td>ELECTRICAL AND ELECTRONICS ENGINEERING</td>
<td>EEE 411 Fundamentals of Electric Power Utilization</td>
</tr>
<tr>
<td>MECHANICAL ENGINEERING</td>
<td>MEC 411 (A) Finite Element Analysis</td>
</tr>
<tr>
<td></td>
<td>MEC 411 (B) Operation research</td>
</tr>
<tr>
<td>COMPUTER SCIENCE & ENGINEERING</td>
<td>CSE 411(A) Introduction to soft computing</td>
</tr>
<tr>
<td></td>
<td>CSE 411(B) Cloud computing overview</td>
</tr>
<tr>
<td></td>
<td>CSE 411(C) Digital Image processing</td>
</tr>
<tr>
<td></td>
<td>CSE 411(D) Embedded Systems and Applications</td>
</tr>
<tr>
<td>INFORMATION TECHNOLOGY</td>
<td>IT 411 (A) Software Engineering Concepts</td>
</tr>
<tr>
<td></td>
<td>IT 411 (B) Foundations of Web Development & Design</td>
</tr>
<tr>
<td></td>
<td>IT 411 (C) Open Source Technologies</td>
</tr>
<tr>
<td></td>
<td>IT 411 (D) Multimedia Concepts</td>
</tr>
<tr>
<td>CHEMICAL ENGINEERING</td>
<td>CHE 411(A) Food Processing Technology</td>
</tr>
<tr>
<td></td>
<td>CHE 411(B) Corrosion Engineering</td>
</tr>
<tr>
<td></td>
<td>CHE 411(C) Computational Tools for Engineers</td>
</tr>
<tr>
<td></td>
<td>CHE 411(D) Bioinformatics</td>
</tr>
<tr>
<td>CIVIL ENGINEERING</td>
<td>CIV 411 (A) Elements of Environmental Engineering</td>
</tr>
<tr>
<td></td>
<td>CIV 411 (B) Water Resources conservation</td>
</tr>
<tr>
<td></td>
<td>CIV 411 (C) Elements of Transportation Engineering</td>
</tr>
<tr>
<td>PHYSICS</td>
<td>PHY 411 Principles & Applications of NDT Methods</td>
</tr>
<tr>
<td>CHEMISTRY</td>
<td>CHY 411 (A) Environmental Sciences</td>
</tr>
<tr>
<td></td>
<td>CHY 411 (B) Green Technologies</td>
</tr>
</tbody>
</table>
FIRST YEAR SYLLABI

I- Semester

&

II- Semester
ENGLISH
(Common for all branches)

EEE 111
Credits: 3
Instruction: 3 Periods & 1 Tut/Week
Sessional Marks: 40
End Exam: 3 Hours
End Exam Marks: 60

Course Objectives:
➢ To improve the language proficiency of the students in English with emphasis on Reading and Writing skills.
➢ To enable the students to study engineering subjects with greater comprehension & cognizance.
➢ To strengthen the vocabulary of the students.
➢ To enable the students to write grammatically correct structures with logical flow.
➢ To equip the students with the knowledge of different formats of business communication.

Course Outcomes:
By the end of the course, the student will be able to:
1. Analyze the structure of the phrases, clauses and sentences
2. Apply his enriched vocabulary to give better shape to his communication skills.
3. Effectively use different formats of business correspondence.
4. Use idiomatic expressions and foreign phrases in his communication.
5. Analyse, interpret and compose meaningful texts.

SYLLABUS

UNIT I
Vocabulary: One Word Substitutes
Grammar: Noun: Noun Phrase, Gerunds
Writing Skills:
1) Formal Letter writing – format, style of letter writing and types of letters — complaint, enquiry, requesting quotations, invitation, regret and acceptance.
2) Story Building-Developing a story from the key words, giving a title and describing learning outcomes.

UNIT II
Vocabulary: Foreign phrases or expressions
Grammar: Adjectives: Quantifiers, qualifiers, determiners, nouns as adjectives, verbs as adjectives, adjective phrases
Writing Skills:
2. Essay writing.
UNIT III
Vocabulary: Idiomatic expressions- meaning and usage.
Grammar: Articles (concept and function; definite, indefinite and omission of articles)
Writing Skills:
1. Preparation of C.V. and Resume-format, style purpose and objective.
2. Précis- writing technique with suitable title.

UNIT IV
Vocabulary: Phrasal Verbs derived from the following dynamic verbs: Go, Get, Run, Take, Look, Put, Hold, Stand etc.
Grammar: Prepositions or prepositional phrases
Writing Skills:
1. Reading comprehension – questions based on facts, interpretation, logical deduction, vocabulary.
2. E-mail etiquette- format, style and language

UNIT V
Vocabulary: Synonyms and Antonyms (From the text book only)
Grammar: Pronouns: Kinds of pronouns, relative pronouns – who and whom, whose, which Verbs - Aspects, moods, tenses, direct and indirect speech (active and passive voice), concord, Infinites and verb participles, verb phrase, Conditionals – probable, improbable, impossible, If-clause, Correction of sentences

TEXT BOOK:
Life through language Pearson Publication Delhi

REFERENCE BOOKS:
1. GJ.K. Gangal *Practical Course for Developing Writing Skill in English* PHI
3. S.M.Gupta *Current English Grammar And Usage* PHI
5. AbulHashem *Common errors in English* Ramesh Publishing House
7. Edgar Thorpe & Showick Thorpe *Objective English* Pearson
ENGINEERING MATHEMATICS-I
(Common for all branches)

EEE 112 Credits :3
Instruction : 3 Periods & 1 Tut/Week Sessional Marks :40
End Exam : 3 Hours End Exam Marks:60

Course Objectives :
- To impart knowledge in basic concepts of functions of several variables and their applications like maxima & minima.
- To enable the students to study the concepts of Fourier series.
- To enable the students to study the concepts of three dimensional figures like sphere, cone cylinder and conicoids.
- To equip the students with the knowledge of multiple integrals and their applications.
- To introduce the concepts of improper integrals like beta, gamma & error functions.

Course Outcomes:
By the end of the course, student will be able to:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Familiarize with functions of several variables</td>
</tr>
<tr>
<td>2.</td>
<td>Apply Fourier series in solving boundary value problems</td>
</tr>
<tr>
<td>3.</td>
<td>Apply the concept of three dimensional analytical geometry</td>
</tr>
<tr>
<td>4.</td>
<td>Use mathematical tools needed in evaluating multiple integral and their usage.</td>
</tr>
<tr>
<td>5.</td>
<td>Use the concepts of improper integrals, Gamma, Beta and Error functions which are needed in Engineering applications</td>
</tr>
</tbody>
</table>

SYLLABUS

UNIT I
12 Periods

Partial Differentiation: Function of two or more variables – Partial Derivatives – which variable is to be treated as constant – Homogeneous functions – Euler’s theorem – Total Derivative - Change of Variables .Jacobians – Taylor’s theorem for functions of two variables – Maxima and Minima functions of two variables.

UNITII
12 Periods

UNIT III

UNIT IV

UNIT V

Beta & Gamma functions :Beta function – Gamma function relation between Beta and Gamma functions –results and problems, error function.

TEXT BOOK:

REFERENCE BOOKS:

ENGINEERING PHYSICS
(Common for all branches)

EEE 113 Credits: 3
Instruction : 3 Periods & 1 Tut/Week Sessional Marks : 40
End Exam : 3 Hours End Exam Marks : 60

Course Objectives:
➢ To impart knowledge in basic concepts of physics relevant to engineering applications
➢ To introduce advances in technology for engineering applications

Course Outcomes:
By the end of the course, student will be able to:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Understand the fundamental concepts of thermodynamics.</td>
</tr>
<tr>
<td>2</td>
<td>Familiar with the fundamentals of electromagnetic induction and</td>
</tr>
<tr>
<td></td>
<td>Ultrasonics.</td>
</tr>
<tr>
<td>3</td>
<td>Aware of the basic concepts of optics like interference,</td>
</tr>
<tr>
<td></td>
<td>diffraction, polarization and its various applications.</td>
</tr>
<tr>
<td>4</td>
<td>Understand the working principle and applications of lasers</td>
</tr>
<tr>
<td></td>
<td>and fiber optics.</td>
</tr>
<tr>
<td>5</td>
<td>Learn fundamentals of modern physics and its importance in</td>
</tr>
<tr>
<td></td>
<td>modern technology.</td>
</tr>
</tbody>
</table>

SYLLABUS

UNIT I 10 Periods
Thermodynamics: Heat and work, first law of thermodynamics and its applications, reversible and irreversible processes, heat engine, Carnot cycle and its efficiency, Carnot’s theorem, second law of thermodynamics, entropy – entropy change in reversible and irreversible processes, entropy and second law, entropy and disorder, entropy and probability, third law of thermodynamics

UNIT II 10 Periods
Electromagnetism: Faraday’s law of induction, Lenz’s law, Integral and differential forms of Faraday’s law, self-inductance, energy stored in electric and magnetic fields, Poynting vector, displacement current, Maxwell’s equations in integral form (no derivation), wave equation, propagation of electromagnetic waves in free space

Ultrasonics: Properties of ultrasonic waves, production of ultrasonic waves by magnetostriction and piezoelectric methods, applications of ultrasonics

UNIT III 10 Periods
Optics
Interference: Introduction, principle of superposition, coherence, Young’s double slit experiment, conditions for interference, interference in thin films by reflection, wedge shaped film and Newton’s rings
Diffraction: Introduction, Fresnel and Fraunhofer diffraction, diffraction at a single slit

Polarisation: Introduction, types of polarized light, double refraction in uniaxial crystals, Nicol’s prism, quarter and half-wave plate, production and detection of plane, circular and elliptically polarized light

UNIT IV 10 Periods

Lasers: Introduction, characteristics of a laser beam, spontaneous and stimulated emission of radiation, population inversion, Ruby laser, He-Ne laser, semiconductor laser, applications of lasers

Fibre optics: Introduction to optical fibers, principle of propagation of light in optical fibers, acceptance angle and acceptance cone, numerical aperture, types of optical fibers, modes of propagation and refractive index profiles, attenuation in optical fibers, advantages of optical fibers in communications, fiber optics communication system, applications of optical fibers, fiber optic sensors

UNIT V 10 Periods

Quantum Mechanics: Planck’s hypothesis, wave-particle duality, introduction to quantum theory, de-Broglie concept of matter waves, Heisenberg’s uncertainty principle, Schrodinger’s time independent and time dependent wave equations, physical significance and properties of the wave function ψ, application of Schrodinger wave equation for a particle in one dimensional well - eigenwavefunctions and energy eigen values of the particle Elements of Statistical Mechanics: Elementary concepts of Maxwell-Boltzman, Bose-Einstein and Fermi-Dirac statistics (no derivation)

TEXT BOOKS:
3. Resnick & Halliday Physics - Volume II

REFERENCE BOOKS:
1) V. Rajendran Engineering physics McGraw Hill Education Private Ltd
2) S.O. Pilai, Sivakami Engineering Physics New Age International Publishers
3) Young & Freedman University Physics Pearson Education
4) A. Marikani Engineering Physics PHI Learning Private Limited
ENGINEERING DRAWING
(Common for all branches)

EEE 114 Credits :3
Instruction : 1 Theory & 3 Practical Periods/week
End Exam : 3 Hours

Course Objectives:

- To increase ability to communicate with people and learn to sketch and take field dimensions.
- To make the student familiar to the drawing practices and convection
- To familiarize the student about various engineering curves used in industry
- To enable the student draft simple engineering components and analyze different views of components.
- To introduce basic Auto CAD skills.

Course Outcomes:

By the end of the course, student will be able to:

1. Draw various engineering curves and understand the basic geometrical constructions.
2. Prepare orthographic projections of points and lines
3. Produce orthographic projections of plane surfaces
4. Draw orthographic projections of solids in various orientations.
5. Prepare isometric projections and understand basics of Computer Aided Drafting.

SYLLABUS

UNIT I

Introduction to Engineering Drawing & basics of geometrical construction. Construction of conic sections, Construction of cycloidal curves (cycloid, epicycloid, and hypocycloid), involutes (over circles and polygon) & Archimedian spiral.

UNIT II

Orthographic projections – projections of points – projections of straight lines (lines parallel to both HP & VP, lines parallel to one and inclined to other, lines inclined to both the planes)
UNIT III
Projections of planes – perpendicular planes – oblique planes

UNIT IV
Projection of solids – Prisms – Cylinder– Pyramids &Cones

UNIT V
Isometric projections – Plane solids, Combination of solids Demonstration & Practice: Computer aided drafting of lines, planes solids and Dimensioning.

TEXT BOOK:

REFERENCE BOOKS:

1. K. L. Narayana & P. Kanniah *Engineering Drawing*
2. R. B. Choudary *Engineering Graphics* with Auto CAD
3. Trymbaka Murty *Computer Aided Engineering Drawing*
ENVIRONMENTAL SCIENCES
(Common for all branches)

EEE 115 Credits 3
Instruction : 3 Periods & 1 Tut/Week Sessional Marks :40
End Exam : 3 Hours End Exam Marks:60

Course Objectives:

➢ To gain knowledge on the importance of environment and ecosystems.
➢ To acquire knowledge with respect to biodiversity, its threats and its conservation and appreciate the concept of interdependence.
➢ To acquire knowledge about environmental pollution- sources, effects and control measures of environmental pollution
➢ To understand the treatment of wastewater and solid waste management.
➢ To be aware of the national and international concern for environment for protecting the environment

Course Outcomes:

<table>
<thead>
<tr>
<th>By the end of the course, student will be able to:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Identify the characteristics of various natural resources and can implement the conservation practices</td>
</tr>
<tr>
<td>2 Realize the importance of Ecosystem and Biodiversity for maintaining ecological balance</td>
</tr>
<tr>
<td>3 Classify, analyze various pollutants and can develop methods for solving problems related to environment</td>
</tr>
<tr>
<td>4 Design and evaluate strategies and methods for sustainable development of environmental systems and for the remediation or restoration of degraded environments</td>
</tr>
<tr>
<td>5 Get awareness on various environmental laws and regulations applicable to global issues and play a role in solving social problems</td>
</tr>
</tbody>
</table>
SYLLABUS

UNIT I 10 Periods

Introduction to Environment and Natural Resources: Introduction: Definition, Multidisciplinary nature, Scope and Importance of Environmental Sciences- R & D in environment, green advocacy, green marketing, green media and environment consultancy. Need for public awareness.

Natural Resources: Forest resources-use and overexploitation, deforestation, Big Dams effects on forests and tribal people. Water resources-sources, use and over utilization of surface and ground water, conflicts over water, dams-benefits and problems. Food resources-environmental impact of modern agriculture-fertilizer and pesticides. Land resources-land degradation- landslides, soil erosion and desertification. Energy resources- renewable and non-renewable energy resources and use of alternate-energy sources.

UNIT II 10 Periods

Ecosystem & Bio Diversity: Ecosystem: Concept of an ecosystem-structure and function of an ecosystem Food chains, food webs and ecological pyramids, Energy flow in an ecosystem, Ecosystem regulation, Ecological succession. Types, characteristic features, structure and function of forest, grass land, desert and aquatic ecosystems.

Biodiversity: Definition, types, India as a Mega diversity Nation, Values of biodiversity, Hot spots of biodiversity, Threats to biodiversity-habitat loss, poaching, human-wildlife conflicts, Endangered and endemic species, Conservation of biodiversity.

UNIT III 10 Periods

Environmental Pollution and Waste Management: Sources, effects and control measures of Air pollution, Noise Pollution, Soil Pollution, Marine pollution, Thermal pollution, Radio Active Pollution. Water Pollution (Sources, Effects, Control measures, DO, BOD, COD, sewage treatment), Green house effect, Ozone depletion, Acid rain –causes and adverse effects.

UNIT IV 8 Periods

Urbanization, Industrialization, Transportation, Human population and the environment-population growth, role of information technology in environment and human health.

UNIT V

Case Studies: Chipko Moment, Kolleru Lake, Fluorosis, Silent valley project, Narmada BachoAndolan, Ralegon siddhi, Tehri dam, Madhura refinery and Tajmahal

TEXT BOOK:

REFERENCE BOOKS:

2. G. S. SodhiFundamental concepts of Environmental Chemistry, Narosa publishing house, New Delhi
ENGINEERING PHYSICS LAB
(Common for all branches)

EEE 116 Credits: 2
Practical / week : 3 Sessional Marks :50
End Exam : 3Hrs End Exam Marks : 50

Course Objectives:
- To enable the students to acquire skill, technique and utilization of the Instruments

Course Outcomes:
<table>
<thead>
<tr>
<th></th>
<th>By the end of the course, student will be able to:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Design and conduct experiments as well as to analyze and interpret data.</td>
</tr>
<tr>
<td>2</td>
<td>Apply experimental skills to determine the physical quantities related to Heat, Electromagnetism and Optics.</td>
</tr>
</tbody>
</table>

List of experiments (any eight to ten experiments are to be completed)

1. Determination of coefficient of thermal conductivity of a bad conductor-Lee’s method.
2. Determination of radius of curvature of a convex lens - Newton’s rings.
4. Determination of Cauchy’s constants of the material of the prism using spectrometer.
5. Determination of thickness of a thin paper by forming parallel interference fringes-Wedge method.
6. Study of variation of magnetic field along the axis of a current carrying circular coil – Stewart and Gee’s apparatus
7. Calibration of a low-range voltmeter using potentiometer.
8. Verification of laws of resistance and determination of specific resistance of wire by using Carey- Foster’s bridge.
9. Determination of refractive indices o-ray and e-ray in quartz crystal (double refraction)
10. Determination of the frequency of an electrically maintained tuning fork - Melde’s experiment.
11. Determination of Rydberg constant using hydrogen discharge tube.

12. Characteristics of photo cell and determination of Planck’s constant – Photoelectric effect.

13. Determination of e/m of an electron by Thomson’s method

TEXT BOOK:

1. Physics Laboratory Manual prepared by Department of Physics ANITS

REFERENCE BOOKS:

2. A.R Vegi *Comprehensive practical Physics* Vegi Publishers Pvt.Ltd.
PROGRAMMING WITH C LAB
(Common for all branches)

EEE 117 Credits : 3
Instruction : 2 Periods/Week Practicals : 3 Periods/week Sessional Marks : 50
End Exam : 3Hrs End Exam Marks : 50

Course Objectives:
To enable students to
➤ Understand the program development steps using compilers.
➤ Strengthen the problem solving skills using programming techniques.
➤ Design programs using various control structures.
➤ Develop programs using structures, unions and files.

Course Outcomes:
By the end of the course, student will be able to:

<table>
<thead>
<tr>
<th>1. Gain a working knowledge on programming.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Learn and use the fundamentals of a programming language (such as language-defined data types (int, float, char, double), control constructs (sequence, selection, repetition), program modules (including functions, modules, methods).</td>
</tr>
<tr>
<td>3. Exhibit the ability to formulate a program that correctly implements the algorithm.</td>
</tr>
<tr>
<td>4. Demonstrate the effective use the programming environment used in the course.</td>
</tr>
</tbody>
</table>

SYLLABUS

1. Overview
2. Introduction to Unix
3. Data Types, Constants
4. Operators, Expressions
5. Control Structures
6. Arrays & Strings
7. Pointers
8. Functions.
9. Structures & Unions
10. Files

REFERENCE BOOKS:

5. B.W. Kernighan, Dennis M. Ritchie The C – Programming Language PHI
LIST OF SAMPLE PROGRAMS

1. Write a C program for any three of the following
 i) To accept the distance between two cities and convert the distance in meters, feet, inches and centimeters. (Note: Input distance in Kilometers).
 ii) To accept the marks obtained by a student in five different subjects, calculate the total marks and percentage obtained by the student (The maximum marks for each subject is 100).
 iii) To accept a 3-digit number and calculate the sum of its digits.
 iv) To accept quantity, product code, unit price of five products and calculate the total price for each product and the SUBTOTAL, TAX, TOTAL and print the details in the following format

<table>
<thead>
<tr>
<th>Qty</th>
<th>Product code</th>
<th>Unit price</th>
<th>Total price</th>
</tr>
</thead>
<tbody>
<tr>
<td>xx</td>
<td>1</td>
<td>400.00</td>
<td>xxxxx.xx</td>
</tr>
<tr>
<td>xx</td>
<td>2</td>
<td>20.00</td>
<td>xxxxx.xx</td>
</tr>
<tr>
<td>xx</td>
<td>3</td>
<td>200.00</td>
<td>xxxxx.xx</td>
</tr>
<tr>
<td>xx</td>
<td>4</td>
<td>100.00</td>
<td>xxxxx.xx</td>
</tr>
<tr>
<td>xx</td>
<td>5</td>
<td>200.00</td>
<td>xxxxx.xx</td>
</tr>
</tbody>
</table>

	SUB TOTAL	xxxxx.xx
	TAX	xxxxx.xx
	TOTAL	xxxxx.xx

 v) To evaluate the following expression
 a) \((ax + by) / (ax – by)\)
 b) \(a^2 + b^2 + \sqrt{2ab}\)

2. Write a C program for any three of the following
 i) To find the maximum and minimum of three numbers.
 ii) For the above experiment in 1-ii) find and display the grade of the student as prescribed below:

Percentage	Grade
>90	A
>80 and <=90	B
>70 and <=80	C
>60 and <=70	D
>=50 and <=60	E
< 50	F

 iii) To find the roots of a quadratic equation.
 iv) To find the area of a triangle when
a) Sides are given
b) Base and height are given
c) Co-ordinates are given
v) To accept an alphabet and convert into its opposite case.

3. Write a C program for any four of the following
i) To print prime numbers between the specified range (eg. 100 to 200)
ii) To generate Pascal triangle format
iii) To compute cosine series: \(\cos(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \ldots \)
iv) To check whether number is palindrome or not.
v) To print set of Armstrong numbers in a specified range. (eg. 100 to 200)
vi) To convert the numbers from the following
a) Binary to decimal
b) Decimal to binary

4. Write a C program to perform the following operations in a given array of ’n’ numbers
i) Sum of all the numbers
ii) Minimum and maximum in the array
iii) Searching an element
iv) To generate random real numbers in the range of 10 to 20 and sort them.

5. Write a C Program to perform the following on the matrices
i) Transpose of a matrix and check the symmetry
ii) Trace and norm of a matrix
iii) Addition of matrices
iv) Multiplication of two matrices

6. Write a C program to perform any two of the following operations on strings
(not using library functions)
i) To check whether the given string is palindrome or not.
ii) To find the length of the string
iii) To concatenate two strings.
iv) To check whether the given substring exists in a text and display the frequency.

7.
i) Write a C program to create a structure for a student with the details name, roll no five subject marks, total marks, percentage and sort the records according to the percentage.
ii) Write a C program to add two complex numbers using structures.
iii) Write a C program to illustrate difference between union and structure.
8.

i) Write a program to calculate the sum of an array using pointers.
ii) Write a program to search a name in a given list of names using pointers.

9. Write a C program using functions

i) To illustrate call by value and call by reference

ii) To accept a string and character and pass them as parameters to a function, the function shall replace the character in the string with any other specific character and return the modified string.

iii) To pass the employee record as a structure to the function. The function shall compute the gross salary (include DA and HRA Calculation), take the savings as input and compute the tax payable as per the prescribed table.

<table>
<thead>
<tr>
<th>Gross Salary</th>
<th>Tax (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than 2 Lakhs</td>
<td>NIL</td>
</tr>
<tr>
<td>2 Lakhs to 5 Lakhs</td>
<td>10</td>
</tr>
<tr>
<td>5 Lakh to 10 Lakh</td>
<td>20</td>
</tr>
<tr>
<td>10 Lakhs to 50 Lakhs</td>
<td>30</td>
</tr>
<tr>
<td>Above 50 lakhs</td>
<td>50</td>
</tr>
</tbody>
</table>

Note: The employee record shall contain employee name, employee id, hire date, basic salary, DA, HRA.

10. Write a C program for any one program for the following to illustrate recursion

i) Factorial of a number

ii) GCD and LCM of two numbers

iii) Fibonacci series

11. Write a C program to perform any three of the following on files

i) To count the number of alphabets, numbers, words, lines in a given file.

ii) To merge two files into third auxiliary file and display the content.

iii) To print every even position character in a given file.

iv) To separate alphabets and integers into two files from the given source file.

12. Write a C program to update the record of a person in a file by accepting person ID.

Hint:

1. Create the file with few records.

2. The fields in a record
 a. Name of the person
 b. Identity(ID) of the person
 c. Age
 d. Gender
 e. Occupation
 f. Salary
WORKSHOP
(Common for all branches)

EEE 118 Credits : 2
Practical / week :3 Sessional Marks :50
End Exam : 3Hrs Exam Marks : 50

Course Objectives:
➢ To provide training and hands on experience to the students on basic Engineering related skills like carpentry, fitting, house wiring and tin smithy.

Course Outcomes:

<table>
<thead>
<tr>
<th>By the end of the course, student will be able to:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Make different carpentry joints.</td>
</tr>
<tr>
<td>3. Make simple jobs like funnel, elbow etc. using sheet metal.</td>
</tr>
<tr>
<td>4. Understand and build circuits for different types of applications like stair case wiring, series and parallel connections.</td>
</tr>
</tbody>
</table>

LIST OF EXPERIMENTS

Minimum of three exercises has to be conducted from each trade.

Trade:

Carpentry
1. Cross Lap Joint
2. Dovetail Joint
3. Mortise and Tennon Joint
4. Briddle Joint

Fitting
1. V Fit
2. Square Fit
3. Half Round Fit
4. Dovetail Fit

House Wiring
1. Parallel / Series Connection of three bulbs
2. Stair Case wiring
3. Florescent Lamp Fitting
4. Measurement of Earth Resistance

Tin Smithy
1. Taper Tray
2. Square Box without lid
3. Elbow
4. Funnel

Dept. of Electrical & Electronics Engineering, ANITS (A)
ENGINEERING MATHEMATICS-II
(Common for all branches)

EEE 121
Instruction : 3 Periods & 1 Tut/Week
End Exam : 3 Hours
Credits :3
Sessional Marks :40
End Exam Marks:60

Course Objectives:
➢ To impart knowledge in basic concepts of solving linear system of equations.
➢ To enable the students to study the Eigen values and Eigen vectors of matrix.
➢ To introduce the concepts of ordinary differential equations and their applications to engineers.
➢ To enable the students to solve any higher order differential equations and to solve differential equations related to simple electric circuits, Newton’s law of cooling.
➢ To introduce the students to Laplace Transforms and their applications.

Course Outcomes:
By the end of the course, student will be able to:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Solve linear system equations using of matrix algebra techniques</td>
</tr>
<tr>
<td>2.</td>
<td>Determine the Eigen values and vectors of a matrix</td>
</tr>
<tr>
<td>3.</td>
<td>Apply different techniques in solving differential equations that model engineering problem</td>
</tr>
<tr>
<td>4.</td>
<td>Use the application of Differential equations like simple electric circuits, Newton’s law of cooling and to solve any higher order linear ordinary differential equation with constant coefficients</td>
</tr>
<tr>
<td>5.</td>
<td>Solve linear differential equations and Network analysis using Laplace transforms.</td>
</tr>
</tbody>
</table>

SYLLABUS

UNIT I 11 Periods

UNIT II 12 Periods

UNIT III

UNIT IV

Higher order Linear Differential Equations: Definitions – Rules for finding the complementary function, rules for finding the particular integral, method of variation of parameters, equations reducible to linear equations with constant coefficient - Cauchy’s homogeneous linear equation, Legendre’s linear equation.

UNIT V

Inverse Laplace transforms – Other methods of finding inverse transforms (Excluding Residue method) Convolution theorem – Application’s to Differential Equations – Unit Step function- Unit Impulsive functions.

TEXT BOOK:

REFERENCE BOOKS:

ENGINEERING CHEMISTRY
(Common for all branches)

EEE 122 Credits :3
Instruction : 3 Periods & 1 Tut/Week
End Exam : 3 Hours
Sessional Marks :40
End Exam Marks:60

Course Objectives:

- To provide knowledge on problems associated with impure water and various water treatment technologies
- To enable the students to know the importance of semiconducting materials and preparation techniques
- To provide basic knowledge on conventional energy resources, developments in batteries and fuel cells
- To understand the corrosion of metals, various methods to prevent and control of corrosion
- To create awareness on advanced concepts like nano materials, green chemistry and eco-friendly technologies for future development

Course Outcomes:

<table>
<thead>
<tr>
<th>By end of the course, student will be able to:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Identify the problems associated with raw water in various applications and can adopt suitable technologies for domestic and industrial feed waters.</td>
</tr>
<tr>
<td>2 Identify & generalize the properties of semiconducting materials and can select suitable semiconducting & various ceramic materials for specific applications.</td>
</tr>
<tr>
<td>3 Classify and analyze the conventional energy sources and design of suitable batteries/cells for different engineering applications.</td>
</tr>
<tr>
<td>4 Select and design of suitable materials to prevent corrosion and protect various parts from corrosion.</td>
</tr>
<tr>
<td>5 Implement the green chemistry principles, concept of tribology, unique properties of nano & composite materials in designing of suitable methods and materials to meet the technological challenges.</td>
</tr>
<tr>
<td>6 Solve scientific problems related to various engineering fields.</td>
</tr>
</tbody>
</table>

Dept. of Electrical & Electronics Engineering, ANITS (A)
SYLLABUS

UNIT I 10 Periods

Water Chemistry: Impurities in water. Hardness of water - units and calcium carbonate equivalents, estimation of hardness (EDTA method) - disadvantages of hard water, boiler troubles- Scale & Sludge formation - prevention- Internal treatment - (Phosphate, Carbonate and Calgon conditioning) -Caustic embrittlement

Water treatment techniques: Softening of water -lime-soda process -numerical problems on LS process -Zeolite, -ion exchange methods, Desalination of water – Reverse osmosis and Eelectrodialysis, Municipal water treatment - Screening, sedimentation, coagulation, Sterilization- Chlorination-Break Point chlorination.

UNIT II 10 Periods

Ceramic Materials: Cement-Manufacture of Portland cement - Setting and hardening of cement - Cement concrete - RCC, Refractories - Classification - properties, Ceramics and its Engineering applications.

UNIT III 10 Periods

Chemical Energy: Electrode potential, electro chemical series – Reference electrodes – SHE, Calomel electrode – Galvanic cells – primary cells (Dry cell) secondary cells (Lead acid, Ni-Cd, Li ion batteries) H$_2$-O$_2$fuel cells.

Solar Energy: Construction and Working of Photovoltaic cell

UNIT IV 08 Periods

Corrosion Chemistry: Origin and theories of corrosion – Types of corrosion - Galvanic corrosion, concentration cell corrosion, pitting corrosion, stress corrosion, inter granular corrosion; Factors affecting corrosion – Corrosion

Prevention & Control of Corrosion: Cathodic protection; Corrosion inhibitors; Protective coatings –Galvanization & Tinning –Anodized coatings - paints & special paints
UNIT V 10 Periods

Nanochemistry: Introduction, growth of nanoparticles (Sol-gel process), Fullerenes and Carbon nanotubes

Green chemistry: Principles of Green chemistry, Alternative Solvents used in green synthesis.

Lubricants: Concept of Tribology - Mechanism of lubrication - Blended oils - properties of lubricating oils - Viscosity Index - Fire & Flash Point - Cloud & Pour Point - Aniline point.

High Polymers & Composites: Basic concepts of Polymers, Effect of polymer structure on properties. Plastics - Thermoplastic and Thermosetting resins, Composites - types - Fiber Reinforced Plastics - Particulate composites - Layer composites, engineering applications of composites.

TEXT BOOK:

REFERENCE BOOKS:

5. V.K. Ahluvalia *Green solvents for organic synthesis* Narosa publications.
PROFESSIONAL ETHICS AND HUMAN VALUES
(Common for All Branches)

EEE 123 Credits : 2
Instruction : 2 Periods & 1 Tut/Week Sessional Marks : 100

Course Objectives:
- To understand moral values and their significance.
- To draw inspiration for imbibing moral values
- To understand professional ethics and obligations
- To know the code of ethics of relevant Professional societies

Course Outcomes:

<table>
<thead>
<tr>
<th>By end of the course, student will be able to:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Understand the right code of conduct.</td>
</tr>
<tr>
<td>2. Assess his/her roles as a proactive member of the society</td>
</tr>
<tr>
<td>3. Solve moral dilemmas and issues</td>
</tr>
<tr>
<td>4. Implement Code of ethics of relevant Professional societies</td>
</tr>
</tbody>
</table>

SYLLABUS

UNIT I: Introduction
Philosophical basis for human values- Human values as enshrined in the Gita, Bible and khoran; Religion- Values propounded in various religions- Need for Religious harmony

UNIT II: Human Values: Inspiration
Inspiration for human values- Mahatma Gandhi, Dr. SarvepalliRadha Krishnan, Swami Vivekananda, Rabindranath Tagore, Mother Theresa- Benefits of Human values- Harmony between Self-interest and human values

UNIT III: Basics of Professional Ethics
Ethical Human Conduct – based on acceptance of basic human values; Humanistic Constitution and Endersal human order – skills, sincerity and fidelity; Scope and characteristics of people-frily and eco-frily production system, Technologies and management systems.

UNIT IV: Professional Ethics in practice
Profession and Professionalism – Professional Accountability, Roles of a professional, Ethics and image of profession; Engineering Profession and Ethics - Technology and society, Ethical obligations of Engineering professionals, Roles
of Engineers in industry, society, nation and the world; Professional Responsibilities – Collegiality, Loyalty, Confidentiality, Conflict of Interest, Whistle Blowing

UNIT V: Indian Constitution, Code of Ethics and Global Issues

Indian Constitution: Fundamental Rights and duties, Freedom, Equality, Fraternity, Justice, Directive principles of state policy. Sample code of Ethics by Professional Societies such as ASME, ASCE, IMEC, IETE, Institution of Engineers (India), Indian Institute of Materials Management etc.

Multinational corporations - Environmental ethics - computer ethics - weapons development - engineers as managers-consulting engineers-engineers as expert witnesses and advisors -moral leadership.

TEXT BOOKS:

REFERENCE BOOKS:

1. R. Subramanian *Professional Ethics* Oxford Endersity Press.

2. A.N. Tripathy *Human values* 2003, New Age International Publishers

APPLIED PHYSICS
(for EEE, ECE & Mech)

EEE 124 Credits:3
Instruction : 3 Periods & 1 Tut/Week Sessional Marks : 40
End Exam : 3 Hours End Exam Marks: 60

Course Objectives:

➢ To enhance student’s knowledge of theoretical and modern technological
aspects in physics and to introduce fundamentals of physics relevant to
engineering applications

➢ To introduce advances in technology for engineering applications

Course Outcomes:

By end of the course, student will be able to:

<table>
<thead>
<tr>
<th>No.</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Understand the properties of magnetic materials and superconductivity.</td>
</tr>
<tr>
<td>2</td>
<td>Understand the dielectric nature of materials, properties and its applications.</td>
</tr>
<tr>
<td>3</td>
<td>Aware about nano material properties, synthesis and characterization tools.</td>
</tr>
<tr>
<td>4</td>
<td>Familiar with fundamentals of crystal structures.</td>
</tr>
<tr>
<td>5</td>
<td>Learn the basic phenomenon involved in semiconductors and semiconductor devices.</td>
</tr>
</tbody>
</table>

SYLLABUS

UNIT I 12 Periods

Magnetic materials: Definition of magnetic permeability, magnetization and magnetic susceptibility, origin of magnetic moment, classification of magnetic materials, properties of diamagnetic and paramagnetic materials, ferromagnetic materials - hysteresis curve, domain theory of ferromagnetism, soft and hard ferromagnetic materials, anti-ferromagnetic and ferrimagnetic materials, ferrites and its applications

Superconductivity: Introduction, properties of superconductors, effect of temperature and magnetic field, Meissner effect, flux quantization, type – I and type – II superconductors high temperature superconductors, applications of superconductors, BCS theory (qualitative)

UNIT II 10 Periods

Dielectric materials: Definition of electric dipole moment, dielectric polarization and dielectric constant, types of polarization – electronic, ionic and oriental polarization, expression for polarisability, internal fields in solids, Classius – Mossotti
equation, frequency dependence of electronic polarization, properties of ferroelectric materials and their applications

UNIT III
10 Periods

UNIT IV
10 Periods

Crystal structure: Introduction, fundamental terms of crystallography – space lattice, crystal lattice, unit cell, planes, seven crystal systems – Bravias lattices, cubic lattices, crystal directions and planes, Miller indices, interplanar spacing and interatomic distance, some simple crystal structures, body-centered cubic crystals, face-centered cubic crystals

UNIT V
12 Periods

Semiconductor Physics: Intrinsic and extrinsic semiconductors, Fermi level, carrier concentration in intrinsic semiconductor, continuity equation, direct and indirect band gap semiconductors. Lorentz force, Hall effect and its applications. Physics of semiconductor devices: open circuited p-n junction diode, energy diagram of p-n diode, working of a diode, volt-ampere characteristics of p-n junction, diode as a rectifier, light emitting diode (LED), liquid crystal display (LCD), photodiode

TEXTBOOKS:

2. M.N. Avadhanulu & P.G. Kshirasagar *A textbook of engineering physics*, S. Chand publication

REFERENCE BOOKS:

1) V. Rajendran *Engineering physics* Tata McGraw Hill Education Private Limited
2) Dattu Ramanlal Joshi *Engineering Physics* Tata McGraw Hill Education Private Limited
3) A. Marikani *Engineering Physics* PHI Learning Private Limited
FUNDAMENTALS OF EEE

EEE 125
Instruction: 3 Periods & 1 Tut/Week
End Exam : 3 Hours
Credits:3
Sessional Marks : 40
End Exam Marks : 60

Course Objectives:
- To analyze circuits by using basic network theorems and reduction techniques.
- To understand operation of various basic electronic components.
- To understand the principle of operation of electrical machines.

Course Outcomes:

<table>
<thead>
<tr>
<th>By end of the course, student will be able to:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Apply KVL, KCL, Source Transformation, Mesh and Nodal Analysis.</td>
</tr>
<tr>
<td>3. Apply network reduction techniques.</td>
</tr>
<tr>
<td>4. Operate different types of electronic components like diode, transistor, FET, MOSFET.</td>
</tr>
<tr>
<td>5. Use the basic concepts of Magnetic Circuits and Electro Mechanical Energy conversion.</td>
</tr>
</tbody>
</table>

SYLLABUS

UNIT I

UNIT II
UNIT III
12 Periods

Magnetic Theory and Circuits: The Magnetic Circuit: Concept and Analogies, Units, Magnetic Circuit Computations, Hysteresis and Eddy-Current Losses in Ferromagnetic Materials.

UNIT IV
12 Periods

Electronic Devices: The Boltzmann Relation and Diffusion Current in Semiconductors, The Semiconductor Diode, The Transistor, The Junction Field-Effect Transistor (JFET), The Insulated-Gate FET (or MOSFET), the Silicon-Controlled Rectifier (SCR).

UNIT V
10 Periods

Electromechanical Energy Conversion: Analysis of Induced Voltages, Analysis of Electromagnetic Torque, Constructional Features of Electric Machines, (Elementary Treatment only).

TEXT BOOK:

REFERENCE BOOKS:

ENGINEERING CHEMISTRY LAB
(Common for all branches)

EEE 126 Credits : 2
Practical / week : 3 Sessional Marks : 50
End Exam : 3Hrs End Exam Marks : 50

Course Objectives:
- To provide clear idea over quantitative chemical analysis.
- To improve skills in analyzing samples through titration procedures.
- To familiarize with Instrumental methods of analysis for more accuracy.
- To introduce various methods of analyzing the ore samples.

Course Outcomes:

<table>
<thead>
<tr>
<th>By end of the course, student will be able to:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Apply experimental skills in quantitative chemical analysis of water quality parameters, substances and ores.</td>
</tr>
<tr>
<td>2</td>
<td>Select and use a suitable instrumental technique for the quantitative estimation and analyse the data obtained.</td>
</tr>
</tbody>
</table>

List of Experiments (any 10 experiments are to be completed):
1. Preparation of standard solution
2. Estimation of sodium carbonate present in soda ash.
3. Estimation of amount of calcium present in the Portland cement by titrimetrically.
4. Estimation of amount of Copper present in the Copper ore by Iodometrically.
5. Determination of total Hardness present in the given water sample.
6. Estimation of amount of Copper present in the Copper ore by Iodometrically.
7. Determine the strength of acid by titrating with strong base using pH meter.
8. Estimate the individual strength of acids present in the acid mixture by titrating with weak base using pH meter.
9. Estimate the amount of Mohr’s salt present in the given solution by titrating with potassium dichromate using potentiometer.
10. Determination of viscosity of the given liquid by Ostwald viscometer.
11. Determination of rate constant of acid catalyzed hydrolysis of ester.
12. Determination of partition coefficient of iodine distributed between Water and Carbon tetra chloride.

Demonstration
13. Estimation of amount of dissolved oxygen (D.O) present in the given water sample.
14. Synthesize the Phenol-Formaldehyde resin.

TEXT BOOK:

REFERENCE BOOK:
1. S.S. Dara Experiments and calculations in Engineering chemistry 9th edition S. Chand& Company Ltd.
LANGUAGLE LAB
(Common for all branches)

EEE 127
Practical / week : 3
End Exam : 3Hrs
Credits: 2
Sessional Marks :50
End Exam Marks : 50

Course Objectives:

➢ To expose the students to a variety of self-instructional, learner-friendly modes of language learning.
➢ To facilitate computer-aided multi-media instruction enabling individualized and independent language learning.
➢ To improve the fluency in spoken English and neutralize mother tongue influence
➢ To bring about a consistent accent and intelligibility in their pronunciation of English by providing an opportunity for practice in speaking.
➢ To initiate them into greater use of the computer in resume preparation, report writing, format-making etc.
➢ To help the students cultivate the habit of reading passages from the computer monitor, thus providing them with the required facility to face computer-based competitive exams such GRE, TOEFL, GMAT etc.

Course Outcomes:

By the end of the course, student will be able to:

1. Handle CBT (Computer Based Tests) of the qualifying examinations.
2. Receive, interpret, remember and evaluate information by practicing effective listening skills.
3. Speak English with neutralized accent.
4. Narrate, describe and report incidents and situations using appropriate terminology.

SYLLABUS

I CALL (Computer Aided Language Learning)

1. Introduction to the Sounds of English-Vowels, Diphthongs & Consonants.
2. Introduction to Stress and Intonation.
3. Short and long Reading comprehension exercises (listening skills)
4. Telephoning Skills.
II CSL (Communication Skills Lab)

5. ‘Just A Minute’ Sessions (JAM).
6. Describing Objects / Situations / People.
7. Video talks
8. Situational Dialogues / Role Play.

Suggested Software

- Cambridge Advanced Learners’ English Dictionary with CD.
- English Phonetics and Phonology – 2 CDs set
- English Mastery – Alania ABC
- Telephoning English
- Cambridge Grammar of English (Ronald Carter and Michael McCarthy) CD
- English Grammar in Use -Cambridge University Press
- Communication Skills – Oxford U P (Sanjay Kumar and PushpaLatha)

REFERENCE BOOKS:

Books Suggested for English Language Lab Library (to be located within the lab in addition to the CDs of the text book which are loaded on the systems)

1. *Spoken English (CIEFL)* in 3 volumes with 6 cassettes, OUP.
4. Dr A Ramakrishna Rao, Dr G Natanam& Prof SA Sankaranarayanan*English Language Communication : A Reader cum Lab Manual*Anuradha Publications, Chennai
5. Krishna Mohan & NP Singh *Speaking English Effectively* (Macmillan)
8. *English Skills for Technical Students*, WBSCTE with British Council, OL
9. J.K. Gangal *A Practical Course in Effective English Speaking Skills* PHI.
OBJECT ORIENTED PROGRAMMING WITH C++LAB
(Common for all branches, except for Civil & Chemical branches)

EEE 128 Credits :3
Instruction : 2 Periods/Week Practicals : 3 Periods/week Sessional Marks : 50
End Exam : 3Hrs End Exam Marks : 50

Course Objectives:
➢ To introduce Object Oriented Programming (OOP) using the C++ Language.
➢ To provide the basic concepts and techniques which form the Object Oriented Programming paradigm.

Course Outcomes:

<table>
<thead>
<tr>
<th>By the end of the course, student will be able to:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Understand how to use the programming constructs of CPP.</td>
</tr>
<tr>
<td>2. Use Object Oriented Programming concepts to develop object oriented programs.</td>
</tr>
<tr>
<td>3. Apply various object oriented features to solve real world computing problems using C++ language.</td>
</tr>
</tbody>
</table>

SYLLABUS

List of the experiments to be done on the following topics
1. Overview (Transition from C)
2. OOP Concepts and Characteristics
3. Preprocessor , Command line arguments
4. Classes & Data Abstraction
5. Objects
6. Operator Overloading
7. Inheritance
8. Virtual Functions & Polymorphism
9. I/O Streams
10. Templates
11. File Processing
12. Exception Handling Concepts

REFERENCE BOOKS:
1. Mahesh Bhave, Sunil patekarObject Oriented Programming in C++ Second edition, Pearson
LIST OF SAMPLE PROGRAMS

1. Write a C++ program that uses a recursive function for solving Towers of Hanoi problem.
2. Write a C++ program to find both the largest and smallest number in a list of integers.
3. Write a C++ program that uses function templates to solve problems 1 and 2 experiments
4. Write a C++ program to implement the matrix ADT using a class. Use operator overloading for implementation
5. Write the definition for a class called Rectangle that has floating point data members length and width. The class has the following member functions: void setlength(float) to set the length data member void setwidth(float) to set the width data member float perimeter() to calculate and return the perimeter of the rectangle float area() to calculate and return the area of the rectangle void show() to display the length and width of the rectangle intsameArea(Rectangle) that has one parameter of type Rectangle. sameArea returns 1 if the two Rectangles have the same area, and returns 0 if they don’t.
 i. Write the definitions for each of the above member functions.
 ii. Write main function to create two rectangle objects. Set the length and width of the first rectangle to 5 and 2.5. Set the length and width of the second rectangle to 5 and 18.9. Display each rectangle and its area and perimeter.
 iii. Check whether the two Rectangles have the same area and print a message indicating the result. Set the length and width of the first rectangle to 15 and 6.3. Display each Rectangle and its area and perimeter again. Again, check whether the two Rectangles have the same area and print a message indicating the result
6. Create a class called MusicIns to contain three methods string(),wind() and perc(). Each of these methods should initialize string array to contain the following
 i. Veena, guitear, sitar, sarod and mandolin under string
 ii. Flute, clarinet, saxophone, nadaswaram and piccolo under wind
 iii. Table, mridangam, bangos, drums and tambour under perc
 It should also display the contents of the arrays initialized , create a sub class call TypeIns to contain a method called get() and show(). The get() methods must display a menu as follows
○ String instruments
○ Wind instruments
○ Percussion instruments

The show method should display the relevant details according to user choice
the base class variable must be accessible only to its derived classes.

7. Create a base class called shape. It should contain two methods getCoord(),
showCoord() to accept x and y co ordinates and to display the same
respectively. Create a sub class called Rect. It should contain method to
display length and breadth of the rectangle called showCoord(). In main
method, execute the showCoord() of Rect class by applying the dynamic
method dispatch concept

8. Create a class called car. Initialize the color and body attributes to “blue”
and “wagon”. there should be two constructors one is a default the creates
blue wagon the other constructor should take two argcolor, body and initialize.
write method toString() that returns the color and body. Create a sub class
funcar. In sub class there are two constructors to invoke super class
constructors resp. Write a method playCD in sub class that displays the
message “Beautiful music fills the passenger compartment” execute the
methods to show the messages
i. Mycar is a blue wagon
ii. My father’s car is red convertible.

9. Create the ZooAnimal constructor function. The function has 4 parameters
— a character string followed by three integer parameters. In the constructor
function dynamically allocate the name field (20 characters), copy the
character string parameter into the name field, and then assign the three integer
parameters to cageNumber, weightDate, and weight respectively.

10. Write a C++ program to perform operations on complex numbers using
operator overloading

11. Write a C++ program to write number 1 to 100 in a data file NOTES.TXT

12. Write a function in C++ to count and display the number of lines not
starting with alphabet ‘A’ present in a text file “STORY.TXT”.
Example:
If the file “STORY.TXT” contains the following lines,
The rose is red.
A girl is playing there.
There is a playground.
An aeroplane is in the sky.
Numbers are not allowed in the password.
The function should display the output as 3